BIOLOGY SOL REVIEW: A QUICK OVERVIEW

Useful Web sites

1. Released SOL Tests, Interactive, Provides Score

http://www.solpass.org/hs.htm#biology

2. Flashcard Review

http://www.studystack.com/flashcard-38612

3. Really good interactive biology review questions

http://www.bedford.k12.va.us/srhs/sol/biology1.htm

4. Review with a few or many questions. Select # of questions& biology

http://education.jlab.org/solquiz/index.html

Ecology

Commensalism	1 benefits, 0 harmed	Orchid in a tree
Mutualism	2 benefit, 0 harm	Bacterial in human intestine
Parasitism	1 benefit, 1 harmed	Tapeworm
Producer	Autotroph	Plant, photosynthetic
		bacteria or protist
Consumer	Heterotroph	Must eat
Decomposer	Breaking down dead	Fungi or bacteria growing
	organisms	on a dead tree
Scavenger/detritivore	Eats dead organisms	Buzzard eating a dead skunk
Herbivore	Eats plants	aphids
Carnivore	Eats meat	Dog
Omnivore	Eats plants & meat	Humans
Primary consumer	Always a herbivore	
Pioneer	1 st photosynthetic organism	Ex. Moss or lichens
	to colonize barren area	
Secondary consumer	Eats primary consumer	May also be an omnivore
Tertiary consumer	Eats secondary consumer	May be an omnivore
Primary succession	New life	Melting glacier, new island
Secondary succession	New life where there was	Mt. St. Helens, forest fire
	life before	
Punctuated	No change followed by	
equilibrium	short periods of abrupt	
(evolution)	change	
Gradualism	Slow change	
(evolution)]

Predator: the hunter Prey: the one being hunted

Species: organisms look alike, breed, produce fertile offspring Hybrid: offspring of 2 different species, usually not fertile Population: same species living in same place Community: made up of many populations Ecosystem: how communities interact with environment Biosphere: made up of ecosystems

Odds & Ends:

Ingest: to consume Splice: to join together Optimum: best Aquatic: water Terrestrial: land

Homeostasis: maintaining a constant internal environment such as pH, body temperature, water content

Metabolism: all the chemical reactions that take place in the body

Enzymes: function as catalyst to speed up chemical reactions, can be reused, can be affected by temperature & pH

Carrying capacity: maximum number of organisms that an environment can support: S curve, logistic growth, larger organisms

Exponential growth: J curve, smaller organisms, rapid growth followed by sudden massive death , do not care for young

Food Chain: Producer \rightarrow primary consumer \rightarrow secondary consumer (herbivore) (carnivore or omnivore)

Producers (makes food) = Autotroph: photosynthesis & cellular respiration Consumer (eats) = Heterotroph: cellular respiration Arrows show flow of energy

Photosynthesis: uses light + CO2 + H2O \rightarrow makes O2 + C6H12O6 (sugar)

Cellular Respiration: uses $O2 + C6H12O6 \rightarrow makes CO2 + H2O + 36ATP + HEAT$ (purpose is to make ATP)

Photosynthesis & Cellular Respiration form a cycle because the product of one is the start up material for the other.

A = oxygen B = glucose (C6H12O6) C = water D= CO2

CHEMISTRY: Organic Molecules have a Carbon. 4 MACROMOLECULES (all can be used as fuel for body):

Molecule name	Made of	Used for	examples	
Carbohydrate	С, Н, О	Energy storage	Usually end in "ose" Plants store glucose as starch (ie. Potatoes)	Examples of Polysaccharides (carbs): Cellulose: found in plant cell walls
Lipids	C, H, O Shaped like an "E"	Cell membranes, estrogen, long term energy storage	Fat, oil	Starch: polymer made up of monomers, how plants store sugars
Proteins	C, H, O, N (forms amino acidsbuilding blocks of life)	Skin, muscles, organs, enzymes	Usually end in "ase", Lactase	Glycogen: digested starch, found in liver and muscles
Nucleic Acids	C, H, O, N, P (forms nucleotides)	Stores genetic info	DNA & RNA	

Structure	Prokaryote	Eukaryote			
		Plant	Protist	Animal	Fungi
Cell Wall	Yes	Yes	Mostly No	No	yes
G 11 1		37	N/	37	
Cell membrane	Yes	Yes	Yes	Yes	yes
Organelles	No	Yes	Yes	Yes	yes
Ribosomes	Yes	Yes	Yes	Yes	yes
chloroplast	no	yes	Some	no	no
Nucleus	No	Yes	Yes	Yes	yes
Centrioles	No	No	Yes	Yes	no
Example	ONLY	Cactus	Paramecium	Human,	Mushroom,
-	bacteria			worms	yeast

Cell History: In order of Discovery

Invention of microscope

Hooke: viewed cells & named them "CELLS"

Van Leeuwenhoek: viewed pond water & saw "animalcules", now called Protist, also made microscopes

Schleiden: plants are made of cells

Schwann: animals are made of cells

Virchow: cells come from cells

Cell Theory: developed the cell theory which states that all living things are made of 1 or more cells, cells come from cells, cells are the basic unit of life

<u>Modern Cell Theory</u>: Energy flow occurs within cells (ATP), Heredity information (<u>DNA</u>) is passed on from cell to cell, All cells have the same basic chemical composition (CHONPS or macromolecules)

Darwin: Theory of Evolution	Natural Selection: "survival of the fittest"
Speciation: the formation of a new species, must become reproductively isolated	Artificial Selection: "humans select the trait, nature provides variation"
Geographic Isolation: when species become separated by barriers such as mountains or water, may lead to a new species Example: finches on Galapagos Islands	Homologous: same or similar structures bone structures in vertebrate forelimbs: bones in bats, humans, alligator are similar
Temporal Isolation: species are separated by mating at different times of the year	Analogous: structures do not look similar but serve similar function: Bird wings & butterfly wings
Behavioral Isolation: species are separated by different mating rituals	Vestigial: structures of little or no use: Wisdom teeth, human tail bone (coccyx) Vertebrate Embryology: large head, pharyngeal pouches, tail

Channel protein (passageway for food) Receptor protein (receives chemical info) Marker protein with carbohydrate flag (identifies the cell) Polar heads (hydrophilic) Nonpolar tails (hydrophobic, don't like water, forms true barrier

Structure of a Cell Membrane: Fluid Mosaic Model

Important People:

Francesco Redi	Proved life comes from life (used meat & maggots)
Spallanzani	Believed in spontaneous generation
Pasteur	Pasteurization, rabies vaccine, germ theory, life from life
Joseph Priestly	Plants make Oxygen (used plant, candle, mouse)
Melvin Calvin	Carbon Dioxide is used to make glucose
Hans Kreb	Citric Acid Cycle or Kreb cycle for cellular respiration
Fleming	Discovered penicillin
Koch's postulate	Developed method to prove germs cause disease

Experimental Design:

Dependent	What is measured & counted
variable	
Independent	What the scientist changes in experiment
variable	
Control	Group used for comparison, scientist doesn't
	change it
Constants	Conditions kept the same for control &
	experimental group

Heredity & Genetics People: In order of discovery

Mendel	Father of heredity, worked with pea plants
Griffith & Avery	Transformation, worked with mice
Hershey & Chase	Proved DNA is genetic material
Franklin	x-rayed DNA
Chargaff	Base pairing rule A-T & C-G
Watson & Crick	Proved DNA is a double helix (spiral shaped, twisted
	ladder)

Chromosomes are made of 40% DNA & 60% protein

Chromosomes exist in pairs called homologues, a full set of pairs in a cell is a diploid cell, diploid for human somatic (body) cells is 46 or 23 pairs; haploid is one set of chromosomes, in humans haploid is 23 and is found in egg & sperm.

Punnett	Square

(B=brown, b=blond)		В	b
Phenotype : 75% = brown hair, 25% = blond hair	В	BB	Bł
Genotype: 25% BB, 50% Bb, 25% bb	b	Bb	bb
			-

Homozygous: same alleles (copy of a gene) for a trait, example: BB or bb Heterozygous: different alleles for a trait, example: Bb

Phenotype: physical appearance or expression of genes Genotype: genetic makeup, genes that you actually have, may not always be expressed

Incomplete dominance: allele not completely dominant, example: red flower x white flower = pink Codominance: both alleles expressed at same time, example: blood types A x B = AB

DNA is made of :	RNA is made of:
Double strand	Single strand
Phosphate	Phosphate
Deoxyribose (sugar)	Ribose (sugar)
A-T & C-G (nitrogen	A-U & C-G
bases)	

A = adenine, T = Thymine, C = cytosine, G = guanine, U = uracil

Replication	DNA to DNA happens in nucleus
Transcription	DNA to mRNA, happens in nucleus
Translation	mRNA to protein, happens on ribosomes (rRNA)
Building blocks	Amino acids (= protein)
of life	

Mutation: changes in genetic material

Genetic Engineering: recombinant DNA = DNA of 2 different organisms combined

Cell Cycle: where cell grows and copies DNA: G1, S, G2 = interphase

Mitosis: asexual cell reproduction, creates 2 genetically identical cells, makes body cells, stages: prophase, metaphase, anaphase, cytokinesis Meiosis: sexual cell reproduction, forms gametes (egg & sperm), haploid, cuts chromosome # in half, stages:

Meiosis: sexual cen reproduction, forms gametes (egg & sperm) Meiosis I: prophase I, metaphase I, anaphase I , telophase I

Meiosis II: prophase II, metaphase II, anaphase II, telophase II

Comparison of Kingdoms										
	Kingdom	Prokaryote or Eukaryote	DNA ?	Nucleus?	Cell wall?	Cell membrane ?	Reproduce	Movement?	Cells?	Nutrition?
	Animal	E	Yes	Yes	No	Yes	Most sexual (gametes) Some asexual (budding & regeneration)	Mostly Complex	Multicellular	Heterotroph/ consumer
	Plant	E	Yes	Yes	Yes cellulose	Yes	Mostly Sexual, (forms spores or seeds)	Sessile (no movement)	Multicellular	Autotroph / Producer
	Fungi	E	Yes	Yes	Yes, made of chitin	Yes	Sexual (spores) & Asexual (budding)	Sessile	Mostly Multicellular	Heterotroph/ Consumer (external digestion)
	Protist	E	Yes	Yes	Usually, No	Yes	Sexual (conjugation) & Asexual (mitosis or fission)	Cilia, Flagella, Pseudopod	Mostly Unicellular	Some Auto, some Hetero, some both
	Archaebacteria	Ρ	Yes	No	Yes Pepti- doclycan	Yes	Binary Fission	Pili, Flagella	Unicellular	Hetero
	Eubacteria	Ρ	yes	No	Yes Peptido- glycan	Yes	Binary Fission	Pili, Flagella	Unicellular	Some Hetero, Some Auto, (some parasitic, some decomposers)

HUMAN Systems:

Endocrine: glands that release products into the bloodstream to take chemical messages to the cells. Glands include: pituitary, hypothalamus, ovaries, testis, pancreas, thyroid, adrenal, thymus, pineal, parathyroid

Digestion: mouth & salivary glands, esophagus (food pushed through using peristalsis...wavelike muscular contractions), stomach (store, digest protein using enzyme pepsin), small intestines digestion is completed & nutrients are absorbed into blood stream using villi (fingerlike projections that increase surface area), large intestine or colon (unabsorbed & digested material), rectum, anus

Excretory: kidneys (filter unwanted material), bladder (stores liquid waste), urethra (eliminates liquid waste), lungs remove carbon dioxide, water vapor

Circulatory: pulmonary veins (from lungs), left atrium (upper chamber), left ventricle(bottom chamber), aorta (largest artery), out to arteries, arterioles, capillaries, venules, veins, vena cava (largest vein), right atrium, right ventricle, pulmonary arteries (to lungs)

Respiratory: oral cavity or nasal cavity, pharynx (throat), larynx (voice box), trachea (windpipe), bronchus (filters), lungs (alveoli sacs to increase surface area), diaphragm (muscle that separates chest cavity from abdominal cavity, controls pressure in lungs)

Biome	Predominant plant	Predominant animal	Climate
Tundra	Short grasses, moss, lichens	Arctic fox, arctic hare, polar bear	Permafrost
Desert	Succulents (cacti)	Reptiles, birds	Hot, dry
Tropical rainforest	Tall trees and vines	Colorful birds, frogs, monkeys	Rainy, hot
Savannah	Tall grasses, some trees	Elephants, zebra	Moderate rain, warm
Grassland	Grass	Prairie dogs, cattle	Moderate rain, temp. rich soil
Deciduous forest	Oak, maple (trees lose leaves)	Deer, squirrels	4 seasons, rich soil
Taiga, coniferous forest	Pines (conifers)(cones)	Bear, elk	colder

	Phylum	Class	Example	nutrition	symmetry	reproduction	
I N V E	Porifera		Sponges	Filter feeder	asymmetrical	Sexual, (hermaphrodites) Asexual (regeneration or budding)	
R T	Cnidarians	Scyphozoan	Jellyfish,	heterotroph	radial	Sexual	
E B R		Hydrozoan	Hydra			Sexual, Asexual (budding)	
A T		Anthozoan	Sea anemone, coral			sexual	
E	Platyhelminthes	Turbellaria	planaria	heterotroph	bilateral	Hermaphrodites	
3	(flatworms)	Trematoda	Blood fluke(shistosomiasis)	parasitic			
		Cestoda	tapeworm	parasitic			
	Nematoda (roundworms)		Pin worms, hookworms, ascaris Filariasis (elephantiasis)	Heterotroph Parasitic	bilateral	sexual	
N 7	Mollusca	Gastropods	Snails, slugs,	Hetero	bilateral	sexual	
N O P		Bivalves	Oysters,clams	Hetero: Filter feeder			
ь А		cephalopods	Octopus, quid	Hetero			
C K	Annelida (segmented)	Polychaeta	Marine worm	Hetero	bilateral	Sexual, hermaphrodites	
B O N		Oligochaeta	Earthworms	Hetero: Decomposer	-		
E		Hirudinea	leeches	Hetero: Decomposer & scavenger			
	Arthropoda (jointed legs)	Sub Plylum: Chelicerata (fangs)	Spiders, mites, scorpions (arachnids)	hetero	bilateral	sexual	
		Sub Phylum: Crustacea	Lobster, shrimp, (aquatic) pillbug (terrestrial)				
		Sub Phylum Uniramis (mandibles)	Insects (beetles, butterflys)				
	Echniderm		Sea urchin, sand dollar, star fish	Hetero, predator	Radial	Sexual, star fish can regenerate	

Stamen = male structures Anther contains pollen Carpel or Pistil = female structures Pollination occurs on stigma

Phylum	c l a s	Example	Nutrition	# heart chambers	Respiration (Breathing)	Endothermic or ectothermic	Fertilization	Symmetry	reproduction
Chordata	F i s h	Class Agnatha=jawless, lamprey & hagfish Class Osteichtheyes=boney, most fish ClassChondrichthyes=cartilage, sharks, rays, skates	Hetero	2	Gills	Ectothermic	Mostly external, some internal (shark)	Bilateral	sexual
Vertebrata (have a backbone)	A m p h i b i a n	Frogs, toads, salamanders		3	Lungs & cutaneous (skin)	ectothermic	External		
	s R e p t i l e	Snakes, turtles, alligators, lizards		3 1/2 alligators & crocs have 4	Lungs with alveoli (increases surface area)	Ectothermic (cold blooded)	Internal		
	B i r d s	Eagle, cardinal Aves = birds		4	Lungs with air sacs, most efficient lungs	Endothermic (warm blooded)	Internal		
	M a m a l s	Kangaroo, opossum Hair & milk Duck billed platypus Hair & milk Cat, bat, whale, human Hair & milk		4	Lungs with alveoli	Endothermic (warm blooded)	internal		Marsupial (pouch) Egg layer placental

Oxygen & Carbon Cycles:

Pollutants, dead organisms, respiration of plants & animals put CO2 into air Only photosynthesis removes CO2 & releases oxygen **Nitrogen Cycle:** Legumes: plants with bacteria that convert N2 into ammonia & nitrates useful for plants Dead organisms release Nitrogen Lightning converts atmospheric nitrogen

Phosphorous Cycle: found in water, soil, rock: does not involve air (gas)